Contents
vector-serve
Get started with docker
Start the server in docker
make run.docker
or, run directly
make run
Sentence to embedding transform
The image comes pre-loaded with all-MiniLM-L12-v2
.
curl -X POST http://localhost:3000/v1/embeddings \
-H 'Content-Type: application/json' \
-d '{"input": ["solar powered mobile electronics accessories without screens"]}'
{
"data": [
{
"embedding": [
-0.07903402298688889,
0.028912536799907684,
-0.018827738240361214,
-0.013423092663288116,
-0.06503172218799591,
....384 total elements
],
"index": 0
}
],
"model": "all-MiniLM-L12-v2"
}
Other sentence-transformers will be downloaded on-the-fly on the first request, and cached for future requests.
curl -X POST http://localhost:3000/v1/embeddings \
-H 'Content-Type: application/json' \
-d '{"input": ["solar powered mobile electronics accessories without screens"],
"model": "sentence-transformers/sentence-t5-base"}'
{
"data": [
{
"embedding": [
-0.07903402298688889,
0.028912536799907684,
-0.018827738240361214,
-0.013423092663288116,
-0.06503172218799591,
....384 total elements
],
"index": 0
}
],
"model": "sentence-transformers/sentence-t5-base"
}