Contents
Vector Search
The vector-search flow is two part; first initialize a table using vectorize.table()
, then search the table with vectorize.search()
.
Initialize a table
Initialize a table for vector search. Generates embeddings and index. Creates triggers to keep embeddings up-to-date.
vectorize."table"(
"table" TEXT,
"columns" TEXT[],
"job_name" TEXT,
"primary_key" TEXT,
"args" json DEFAULT '{}',
"schema" TEXT DEFAULT 'public',
"update_col" TEXT DEFAULT 'last_updated_at',
"transformer" TEXT DEFAULT 'text-embedding-ada-002',
"search_alg" vectorize.SimilarityAlg DEFAULT 'pgv_cosine_similarity',
"table_method" vectorize.TableMethod DEFAULT 'append',
"schedule" TEXT DEFAULT 'realtime'
) RETURNS TEXT
| Parameter | Type | Description |
| :— | :–– | :— |
| table | text | The name of the table to be initialized. |
| columns | text | The name of the columns that contains the content that is used for context for RAG. Multiple columns are concatenated. |
| job_name | text | A unique name for the project. |
| primary_key | text | The name of the column that contains the unique record id. |
| args | json | Additional arguments for the transformer. Defaults to ‘{}’. |
| schema | text | The name of the schema where the table is located. Defaults to ‘public’. |
| update_col | text | Column specifying the last time the record was updated. Required for cron-like schedule. Defaults to last_updated_at
|
| transformer | text | The name of the transformer to use for the embeddings. Defaults to ‘text-embedding-ada-002’. |
| search_alg | SimilarityAlg | The name of the search algorithm to use. Defaults to ‘pgv_cosine_similarity’. |
| table_method | TableMethod | The method to use for the table. Defaults to ‘append’, which adds a column to the existing table. |
| schedule | text | ‘realtime’ by default for trigger based updates. accepts a cron-like input for a cron based updates. |
Sentence-Transformer Examples
OpenAI Examples
To use embedding model provided by OpenAI’s public embedding endpoints, provide the model name into the transformer
parameter,
and provide the OpenAI API key.
Pass the API key into the function call via args
.
select vectorize.table(
job_name => 'product_search',
"table" => 'products',
primary_key => 'product_id',
columns => ARRAY['product_name', 'description'],
transformer => 'text-embedding-ada-002',
args => '{"api_key": "my-openai-key"}'
);
The API key can also be set via GUC.
ALTER SYSTEM SET vectorize.openai_key TO 'my-openai-key';
SELECT pg_reload_conf();
Then call vectorize.table()
without providing the API key.
select vectorize.table(
job_name => 'product_search',
"table" => 'products',
primary_key => 'product_id',
columns => ARRAY['product_name', 'description'],
transformer => 'text-embedding-ada-002'
);
Search a table
Search a table initialized with vectorize.table
. The search results are sorted in descending order according to similarity.
The query
is transformed to embeddings using the same transformer
configured during vectorize.table
.
vectorize."search"(
"job_name" TEXT,
"query" TEXT,
"api_key" TEXT DEFAULT NULL,
"return_columns" TEXT[] DEFAULT ARRAY['*']::text[],
"num_results" INT DEFAULT 10
) RETURNS TABLE (
"search_results" jsonb
)
Parameters:
| Parameter | Type | Description |
| :— | :–– | :— |
| job_name | text | A unique name for the project. |
| query | text | The user provided query or command provided to the chat completion model. |
| api_key | text | API key for the specified chat model. If OpenAI, this value overrides the config vectorize.openai_key
|
| return_columns | text[] | The columns to return in the search results. Defaults to all columns. |
| num_results | int | The number of results to return. Sorted in descending order according to similarity. Defaults to 10. |
Example
SELECT * FROM vectorize.search(
job_name => 'product_search',
query => 'mobile electronic devices',
return_columns => ARRAY['product_id', 'product_name'],
num_results => 3
);
search_results
--------------------------------------------------------------------------------------------
----
{"product_id": 13, "product_name": "Phone Charger", "similarity_score": 0.8564681325237845}
{"product_id": 24, "product_name": "Tablet Holder", "similarity_score": 0.8295988934993099}
{"product_id": 4, "product_name": "Bluetooth Speaker", "similarity_score": 0.8250355616233103}
(3 rows)