Run External Index Precomputation Toolkit
- Install requirements
# PYTHON = 3.11
# When using CPU to train k-means clustering
conda install conda-forge::pgvector-python numpy pytorch::faiss-cpu conda-forge::psycopg h5py tqdm
# or
pip install pgvector numpy faiss-cpu psycopg h5py tqdm
# When using GPU to train k-means clustering
conda install conda-forge::pgvector-python numpy pytorch::faiss-gpu conda-forge::psycopg h5py tqdm
-
Prepare dataset in
hdf5
format-
If you already have your vectors stored in
PostgreSQL
usingpgvector
, you can export them to a local file by:python script/dump.py -n [table name] -c [column name] -d [dim] -o export.hdf5
-
If you don’t have any data, but would like to give it a try, you can choose one of these datasets:
wget http://ann-benchmarks.com/sift-128-euclidean.hdf5 # num=1M dim=128 metric=l2 wget http://ann-benchmarks.com/gist-960-euclidean.hdf5 # num=1M dim=960 metric=l2 wget https://myscale-datasets.s3.ap-southeast-1.amazonaws.com/laion-5m-test-ip.hdf5 # num=5M dim=768 metric=dot wget https://myscale-datasets.s3.ap-southeast-1.amazonaws.com/laion-20m-test-ip.hdf5 # num=20M dim=768 metric=dot wget https://myscale-datasets.s3.ap-southeast-1.amazonaws.com/laion-100m-test-ip.hdf5 # num=100M dim=768 metric=dot
-
-
Preform clustering of centroids from vectors
# For small dataset size from 1M to 5M python script/train.py -i [dataset file(export.hdf5)] -o [centroid filename(centroid.npy)] -lists [lists] -m [metric(l2/cos/dot)] # For large datasets size, 5M to 100M in size, use GPU and mmap chunks python script/train.py -i [dataset file(export.hdf5)] -o [centroid filename(centroid.npy)] --lists [lists] -m [metric(l2/cos/dot)] -g --mmap
lists
is the number of centroids for clustering, and a typical value for large datasets(>5M) could range from:$$ 4*\sqrt{len(vectors)} \le lists \le 16*\sqrt{len(vectors)} $$
-
To insert vectors and centroids into the database, and then create an index
python script/index.py -n [table name] -i [dataset file(export.hdf5)] -c [centroid filename(centroid.npy)] -m [metric(l2/cos/dot)] -d [dim] --url postgresql://postgres:123@localhost:5432/postgres
-
Let’s start our tour to check the benchmark result of VectorChord
python script/bench.py -n [table name] -i [dataset file(export.hdf5)] -m [metric(l2/cos/dot)] --nprob 100 --epsilon 1.0 --url postgresql://postgres:123@localhost:5432/postgres