oracle_fdw 0.9.6

This Release
oracle_fdw 0.9.6
Latest Stable
oracle_fdw 1.5.0 —
Latest Testing
oracle_fdw 0.9.10 —
Other Releases
A Foreign Data Wrapper for Oracle
Provides a Foreign Data Wrapper for easy and efficient read access to Oracle databases, including pushdown of WHERE conditions and required columns as well as comprehensive EXPLAIN support.
Released By
The PostgreSQL License
Special Files


oracle_fdw 0.9.6
A Foreign Data Wrapper for Oracle



Foreign Data Wrapper for Oracle

oracle_fdw is a PostgreSQL extension that provides a Foreign Data Wrapper for
easy and efficient read access to Oracle databases, including pushdown of WHERE
conditions and required columns as well as comprehensive EXPLAIN support.

oracle_fdw was written by Laurenz Albe <>

This README contains the following sections:

1. Cookbook
2. Objects created by the extension
3. Options
4. Usage
5. Installation Requirements
6. Installation
7. Internals
8. Problems

1. Cookbook

This is a simple example how to use oracle_fdw.
More detailed information will be provided in the sections "Options" and
"Usage" below.  You should also read the PostgreSQL documentation on
foreign data and the commands used in the example.

For the sake of this example, let's assume you can connect as operating system
user "postgres" (or whoever starts the PostgreSQL server) with the following

  sqlplus orauser/orapwd@//

That means that the Oracle client and the environment is set up correctly.
I also assume that oracle_fdw has been compiled and installed (see section
"Installation" below).

We want to access a table defined like this:

 Name                            Null?    Type
 ------------------------------- -------- ------------
 ID                              NOT NULL NUMBER(5)
 TEXT                                     VARCHAR2(30)
 FLOATING                        NOT NULL NUMBER(7,2)

Then configure oracle_fdw as PostgreSQL superuser like this:

pgdb=# CREATE EXTENSION oracle_fdw;
          OPTIONS (dbserver '//');

(You can use other naming methods or local connections, see the description of
option "dbserver" below.)

Then you can connect to PostgreSQL as "pguser" and define:

          OPTIONS (user 'orauser', password 'orapwd');

(You can use external authentication to avoid storing Oracle passwords;
see below.)

pgdb=> CREATE FOREIGN TABLE oratab (
          id        integer           NOT NULL,
          text      character varying(30),
          floating  double precision  NOT NULL
       ) SERVER oradb OPTIONS (table 'ORATAB');

Now you can use the table like a regular PostgreSQL table.

2. Objects created by the extension

FUNCTION oracle_fdw_handler() RETURNS fdw_handler
  Oracle foreign data wrapper handler

FUNCTION oracle_fdw_validator(text[], oid) RETURNS void
  Oracle foreign data wrapper options validator

These functions are the handler and the validator function necessary to create
a foreign data wrapper.

The extension automatically creates a foreign data wrapper named "oracle_fdw".
Normally that's all you need and you can proceed to define foreign servers.
You can create additional Oracle foreign data wrappers, for example if you
need to set the "nls_lang" option (you can alter the existing "oracle_fdw"
wrapper, but all modifications will be lost after a dump/restore).

FUNCTION oracle_close_connections() RETURNS void
  closes all open Oracle connections

This function can be used to close all open Oracle connections in this session.
See "Usage" below for when this might be useful.

3. Options

Foreign data wrapper options

(Caution: If you modify the default foreign data wrapper "oracle_fdw",
any changes will be lost upon dump/restore.  Create a new foreign data wrapper
if you want the options to be persistent.)

- nls_lang (optional)

  Sets the NLS_LANG environment variable for Oracle to this value.
  NLS_LANG is in the form <language>_<territory>.<charset> (for example
  AMERICAN_AMERICA.AL32UTF8).  This must match your database encoding.
  When this value is not set, oracle_fdw will automatically do the right
  thing if it can and issue a warning if it cannot.
  Set this only if you know what you are doing.  See "Problems" below.

Foreign server options

- dbserver (required)

  The Oracle database connection string for the remote database.
  This can be in any of the forms that Oracle supports as long as your
  Oracle client is configured accordingly.
  Set this to an empty string for local ("BEQUEATH") connections.

User mapping options

- user (required)

  The Oracle user name for the session.
  Set this to an empty string for "external authentication" if you don't
  want to store Oracle credentials in the PostgreSQL database (one simple way
  is to use an "external password store").

- password (required)

  The password for the Oracle user.

Foreign table options

- table (required)

  The Oracle table name.  If unquoted, Oracle will translate it to upper case.
  For lower case, mixed case and special characters, you must specify this
  option enclosed in double quotes.

- schema (optional)

  The table's schema (or owner).  Useful to access tables that do not belong
  to the connecting Oracle user.

- plan_costs (optional, defaults to "off")

  If set to yes/on/true, Oracle's cost estimates will be used.  The problem is
  that Oracle gives good estimates for the result size, but not for the cost
  of the execution (the only estimate you can get is "execution time" in second
  Since this cost estimate is almost useless but expensive to collect,
  oracle_fdw by default does not bother to get Oracle's cost estimates and
  estimates the cost to 10000 regardless of the actual query.

  From PostgreSQL 9.2 on, it is usually better to gather statistics on the
  foreign table (see ANALYZE below) and keep this option disabled.

  Turn this on only if a) query execution is expensive and b) it has a positive
  influence on PostgreSQL query planning.

- max_long (optional, defaults to "32767")

  The maximal length of any LONG or LONG RAW columns in the Oracle table.
  Possible values are integers between 1 and 1073741823 (the maximal size of a
  bytea in PostgreSQL).  This amount of memory will be allocated at least
  twice, so large values will consume a lot of memory.
  If "max_long" is less than the length of the longest value retrieved,
  you will receive the error message "ORA-01406: fetched column value was

4. Usage

Oracle permissions

The Oracle user will obviously need CREATE SESSION privilege and the right
to select from the table or view in question.

For EXPLAIN VERBOSE (and query planning if "plan_costs" is turned on),
the user will also need SELECT privileges on V$SQL and V$SQL_PLAN.


oracle_fdw caches Oracle connections because it is expensive to create an
Oracle session for each individual query.  All connections are automatically
closed when the PostgreSQL session ends.
The function oracle_close_connections() can be used to close all cached Oracle
connections.  This can be useful for long-running sessions that don't access
foreign tables all the time and want to avoid blocking the resources needed
by an open Oracle connection.


When you define a foreign table, the columns of the Oracle table are mapped
to the PostgreSQL columns in the order of their definition.

oracle_fdw will only include those columns in the Oracle query that are
actually needed by the PostgreSQL query.

The PostgreSQL table can have more or less columns than the Oracle table.
If it has more columns, and these columns are used, you will receive a warning
and NULL values will be returned.

Data types

You must define the PostgreSQL columns with data types that oracle_fdw can
translate (see the conversion table below).  This restriction is only enforced
if the column actually gets used, so you can define "dummy" columns for
untranslatable data types as long as you don't access them.  If an Oracle
value exceeds the size of the PostgreSQL column (e.g., the length of a varchar
column or the maximal integer value), you will receive a runtime error.

These conversions are automatically handled by oracle_fdw:

Oracle type                    | Possible PostgreSQL types
CHAR                           | char, varchar, text
NCHAR                          | char, varchar, text
VARCHAR                        | char, varchar, text
VARCHAR2                       | char, varchar, text
NVARCHAR2                      | char, varchar, text
CLOB                           | char, varchar, text
CFILE                          | char, varchar, text
LONG                           | char, varchar, text
RAW                            | uuid, bytea
BLOB                           | bytea
BFILE                          | bytea
LONG RAW                       | bytea
NUMBER                         | numeric, float4, float8, char, varchar, text
NUMBER(n,m) with m<=0          | numeric, float4, float8, int2, int4, int8,
                               |   boolean, char, varchar, text
FLOAT                          | numeric, float4, float8, char, varchar, text
BINARY_FLOAT                   | numeric, float4, float8, char, varchar, text
BINARY_DOUBLE                  | numeric, float4, float8, char, varchar, text
DATE                           | date, timestamp, timestamptz, char,
                               |   varchar, text
TIMESTAMP                      | date, timestamp, timestamptz, char,
                               |   varchar, text
TIMESTAMP WITH TIME ZOME       | date, timestamp, timestamptz, char,
                               |   varchar, text
TIMESTAMP WITH LOCAL TIME ZOME | date, timestamp, timestamptz, char,
                               |   varchar, text
INTERVAL YEAR TO MONTH         | interval, char, varchar, text
INTERVAL DAY TO SECOND         | interval, char, varchar, text

If a NUMBER is converted to a boolean, "0" means "false", everything else "true".

NCLOB is currently not supported because Oracle cannot automatically convert
it to the client encoding.

If you need conversions exceeding the above, define an appropriate view in
Oracle or PostgreSQL.

WHERE conditions

PostgreSQL will use all applicaple parts of the WHERE clause as a filter
for the scan.  The Oracle query that oracle_fdw constructs will contain a WHERE
clause corresponding to these filter criteria whenever such a condition can
safely be translated to Oracle SQL.  This feature, also known as "push-down
of WHERE clauses", can greatly reduce the number of rows retrieved from Oracle
and may enable Oracle's optimizer to choose a good plan for accessing the
required tables.

To make use of that, try to use simple conditions for the foreign table.
Choose PostgreSQL column data types that correspond to Oracle's types,
because otherwise conditions cannot be translated.

The expressions "now()", "transaction_timestamp()", "current_timestamp",
"current_date" and "localtimestamp" will be translated correctly.

The output of EXPLAIN will show the Oracle query used, so you can see which
conditions were translated to Oracle and how.


PostgreSQL's EXPLAIN will show the query that is actually issued to Oracle.
EXPLAIN VERBOSE will show Oracle's execution plan.


From PostgreSQL version 9.2 on, you can use ANALYZE to gather statistics
on a foreign table.  This is supported by oracle_fdw.
Statistics will be used for query planning, and for many queries will
result in good (and much faster) row count estimates even if the table option
"plan_costs" is turned off as long as the statistics are accurate.

Keep in mind that analyzing an Oracle foreign table will result in a full
sequential table scan.

5. Installation Requirements

PostgreSQL 9.1 or better are required.
Oracle client version 10 or better is required.

oracle_fdw should compile and run on any platform supported by PostgreSQL,
although I could only test it on Linux and Windows.

It has been tested with Oracle 10.2 and 11.2.  It might work with other
versions.  Both Instant Client and the regular client should work.

6. Installation

oracle_fdw has been written as a PostgreSQL extension and uses the Extension
Building Infrastructure "PGXS".  It should be easy to install.

You will need PostgreSQL headers and PGXS installed (if your PostgreSQL was
installed with packages, install the development package).
You need to install Oracle's headers as well (SDK package for Instant

Make sure that PostgreSQL is configured "--without-ldap" (at least the server).
See "Problems" below.

Make sure that "pg_config" is in the PATH (test with "pg_config --pgxs").
Set the environment variable ORACLE_HOME to the location of the Oracle

Unpack the source code of oracle_fdw and change into the directory.
Then the software installation should be as simple as

  $ make
  $ make install

For the second step you need write permission to PostgreSQL's shared library

Since the Oracle client shared library is probably not in the standard
library path, you have to make sure that the PostgreSQL server will be able
to find it.  How this is done varies from operating system to operating
system; on Linux you can set LD_LIBRARY_PATH or use /etc/

Make sure that all necessary Oracle environment variables are set in the
environment of the PostgreSQL server process (ORACLE_HOME if you don't use
Instant Client, TNS_ADMIN if you have configuration files, etc.)

To install the extension in a database, connect as superuser and

  CREATE EXTENSION oracle_fdw;

That will define the required functions and create a foreign data wrapper.

7. Internals

oracle_fdw sets the MODULE of the Oracle session to "postgres" and the
ACTION to the backend process number.  This can help identifying the Oracle
session and allows you to trace it with DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE.

oracle_fdw uses Oracle's result prefetching to avoid unnecessary client-server
round-trips. The prefetch counter is set to 200, the memory limit to 24KB.
These limits can be changed in oracle_utils.c.

Rather than using a PLAN_TABLE to explain an Oracle query (which would require
such a table to be created in the Oracle database), oracle_fdw uses execution
plans stored in the library cache.  For that, an Oracle query is "explicitly
described", which forces Oracle to parse the query.  The hard part is to find
the SQL_ID and CHILD_NUMBER of the statement in V$SQL because the SQL_TEXT
column contains only the first 1000 bytes of the query.
Therefore, oracle_fdw adds a comment to the query that contains an MD5 hash
of the query text.  This is used to search in V$SQL.
The actual execution plan or cost information is retrieved from V$SQL_PLAN.

8. Problems


Characters stored in an Oracle database that cannot be converted to the
PostgreSQL database encoding will silently be replaced by "replacement
characters", typically a normal or inverted question mark, by Oracle.
You will get no warning or error messages.

If you use a PostgreSQL database encoding that Oracle does not know
(currently, these are EUC_CN, EUC_KR, LATIN10, MULE_INTERNAL, WIN874
and SQL_ASCII), non-ASCII characters cannot be translated correctly.
You will get a warning in this case, and the characters will be replaced
by replacement characters as described above.

You can set the "nls_lang" option of the foreign data wrapper to force a
certain Oracle encoding, but the resulting characters will most likely be
incorrect and lead to PostgreSQL error messages.  This is probably only
useful for SQL_ASCII encoding if you know what you are doing.
See "Options" above.


Oracle's planner does not give good cost estimates (you can only get the
estimated execution time in second granularity, and it is never less than
one).  So by default, oracle_fdw does not use these estimates.
See the description of the "plan_costs" option above.

Even without that, the current implementation of oracle_fdw requires
calls to the Oracle server for every foreign table during query planning.
That means that there might be a noticeable performance improvement
if query plans are cached, for example by using prepared statements or
PL/pgSQL functions.

LDAP libraries

The Oracle client shared library comes with its own LDAP client
implementation conforming to RFC 1823, so these functions have the same
names as OpenLDAP's.  This will lead to a name collision when the PostgreSQL
server was configured "--with-ldap".

The name collision will not be detected, because oracle_fdw is loaded at
runtime, but trouble will happen if anybody calls an LDAP function.
Typically, OpenLDAP is loaded first, so if Oracle calls an LDAP function
(for example if you use "directory naming" name resolution), the backend
will crash.  This can lead to messages like the following (seen on Linux)
in the PostgreSQL server log:

  ../../../libraries/libldap/getentry.c:29: ldap_first_entry:
  Assertion `( (ld)->ld_options.ldo_valid == 0x2 )' failed.

The best thing is to configure PostgreSQL "--without-ldap".  This is the only
safe way to avoid this problem.
Even when PostgreSQL is built "--with-ldap", it may work as long as you don't
use any LDAP client functionality in Oracle.
On some platforms, you can force Oracle's client shared library to be loaded
before the PostgreSQL server is started (LD_PRELOAD on Linux).  Then Oracle's
LDAP functions should get used.  In that case, Oracle may be able to use
LDAP functionality, but using LDAP from PostgreSQL will crash the backend.

You cannot use LDAP functionality both in PostgreSQL and in Oracle, period.